Math'φsics

Menu
  • Acceuil
  • Maths
  • Physique
    • Maths
    • Physique
  • Série à termes positifs

    Formulaire de report

    Définition

    Série \(\sum u_k\) à termes positifs : série tq \(\exists n\in{\Bbb N},\forall k\geqslant n,u_k\gt 0\)

    Convergence

    Théorèmes

    Proposition :
    Une série à termes positifs est une série convergente si et seulement si la suite des sommes partielles est majorée
    (i.e. Ssi \(\exists M\gt 0,\forall n\geqslant0,S_n\leqslant M\))

    (Série convergente, Série numérique, Majoration - Minoration)

    Théorème de comparaison (Séries)
    Théorème des équivalents (Séries)
    Règle du quotient de d’Alembert - Critère de d’Alembert
    Règle des racines de Cauchy
    Règle de Raabe-Duhamel


  • Rétroliens :
    • Sommation par paquets
    • Série numérique